MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

High Performance Computing on ARM

C. Steinhaus C. Wedding

christian.{wedding, steinhaus}@rwth-aachen.de

February 12, 2015

High Performance Computing on ARM

イロト イポト イヨト イヨト

Dense Linear Algebra 000000 000 00 0	MapReduce 0000 000	Spectral Methods 0000	
Overview			

- 2 MapReduce
- Spectral Methods
- 4 Structured Grids
- Conclusion and future prospect

8

- ₹ 🖹 🕨

Dense Linear Algebra ●00000 ○○○ ○○	MapReduce ೦೦೦೦ ೦೦೦	Spectral Methods	
Motrix motrix m	ultiplikation		

Matrix matrix multiplikation

- Break down Matrix into smaller calculations
- Optimize these calculations
- Run them in parallel
- BLIS breaks GEMM down to $(4 \times 4) \cdot (4 \times 4)$
- NEON implements $(4 \times 4) \cdot (4 \times 4)$

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Matrix matrix multiplikation as implemented in NEON

x0	x4	x8	хС		y0	y4	y8	уC		x0y0+x4y1+x8y2+xCy3	x0y4+
x1	x5	x9	хD	\times	y1	y5	y9	уD	=	x1y0+x5y1+x9y2+xDy3	x1y4+
x2	x6	хA	хE		y2	y6	yА	уE		x2y0+x6y1+xAy2+xEy3	x2y4+
xЗ	х7	xВ	xF		уЗ	у7	yВ	уF		x3y0+x7y1+xBy2+xFy3	x3y4+

Table 1: NEON implementation of matrix matrix multiplikation

http://infocenter.arm.com/help/index.jsp?topic=/com. arm.doc.dai0425/ch04s06s05.html

High Performance Computing on ARM

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Matrix matrix multiplikation as implemented in NEON

x0	x4	x8	хC		y0	y4	y8	уC		x0y0+x4y1+x8y2+xCy3	x0y4+
x1	x5	x9	хD	\times	y1	y5	y9	уD	=	<mark>x1y0</mark> +x5y1+x9y2+xDy3	x1y4+
x2	x6	хA	хE		y2	y6	yА	уE		<mark>x2y0</mark> +x6y1+xAy2+xEy3	x2y4+
x3	x7	xВ	xF		уЗ	у7	yВ	уF		<mark>x3y0</mark> +x7y1+xBy2+xFy3	x3y4+

Table 2: NEON implementation of matrix matrix multiplikation

http://infocenter.arm.com/help/index.jsp?topic=/com. arm.doc.dai0425/ch04s06s05.html

High Performance Computing on ARM

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Matrix matrix multiplikation as implemented in NEON

x0	x4	x8	xC		y0	y4	y8	уC		x0y0+ <mark>x4y1</mark> +x8y2+xCy3	x0y4+
x1	x5	x9	хD	\times	y1	y5	y9	уD	=	x1y0+ <mark>x5</mark> y1+x9y2+xDy3	x1y4+
x2	x6	хA	хE		y2	y6	yА	уE		x2y0+ <mark>x6</mark> y1+xAy2+xEy3	x2y4+
xЗ	x7	xВ	xF		уЗ	у7	yВ	уF		x3y0+ <mark>x7</mark> y1+xBy2+xFy3	x3y4+

Table 3: NEON implementation of matrix matrix multiplikation

http://infocenter.arm.com/help/index.jsp?topic=/com. arm.doc.dai0425/ch04s06s05.html

High Performance Computing on ARM

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Matrix matrix multiplikation as implemented in NEON

x0	x4	x8	xC		y0	y4	y8	уC		x0y0+x4y1+ <mark>x8y2</mark> +xCy3	x0y4+
x1	x5	x9	хD	\times	y1	y5	y9	уD	=	x1y0+x5y1+ <mark>x9y2</mark> +xDy3	x1y4+
x2	x6	хA	хE		y2	y6	yА	уE		x2y0+x6y1+ <mark>xAy2</mark> +xEy3	x2y4+
xЗ	x7	хB	xF		y3	у7	yВ	уF		x3y0+x7y1+ <mark>xBy2</mark> +xFy3	x3y4+

Table 4: NEON implementation of matrix matrix multiplikation

http://infocenter.arm.com/help/index.jsp?topic=/com. arm.doc.dai0425/ch04s06s05.html

High Performance Computing on ARM

Dense Linear Algebra ○○○○● ○○

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Matrix matrix multiplikation as implemented in NEON

x0	x4	x8	xC		y0	y4	y8	уC		x0y0+x4y1+x8y2+ <mark>xCy3</mark>	x0y4+
x1	x5	x9	хD	\times	y1	y5	y9	уD	=	x1y0+x5y1+x9y2+ <mark>xDy3</mark>	x1y4+
x2	x6	хA	хE		y2	y6	yА	уE		x2y0+x6y1+xAy2+ <mark>xEy3</mark>	x2y4+
xЗ	х7	xВ	xF		уЗ	у7	yВ	уF		x3y0+x7y1+xBy2+ <mark>xFy3</mark>	x3y4+

Table 5: NEON implementation of matrix matrix multiplikation

http://infocenter.arm.com/help/index.jsp?topic=/com. arm.doc.dai0425/ch04s06s05.html

High Performance Computing on ARM

Dense Linear Algebra	MapReduce 0000 000	Spectral Methods 0000	
Paper 1			

Design and Analysis of a 32-bit Embedded High-Performance Cluster Optimized for Energy and Performance

Michael F. Cloutier, Chad Paradis and Vincent M. Weaver

Model	Processor Family	Cores	Speed
Raspberry Pi Model B+	ARM1176	1	700MHz
Chromebook	ARM Cortex A15	2	1.7GHz
	ABM Cortex A7/A15	4(big)	1.6GHz
		4(little)	1.2GHz
AMD Opteron 6376		16	2.3GHz
Intel Sandybridge-EP		12	2.3GHz

Table 6: Specification of relevant hardware for DLA Paper 1

< □ > < 同 > < 回 > < 回 > < 回 >

ense Linear Alg	gebra
00000	
00	

MapReduc

Spectral Methods

Structured Grids

Conclusion and future prospect

Performance evaluation Different ARM boards

-					
Maahina	N		Total	MFLOPS	MFLOPS
wachine	IN IN	_	Energy	per Watt	per \$
Raspberry Pi Model B	4000	-	801.80	53.2	5.06
Raspberry Pi Model B+	4000	-	494.05	86.4	5.06
Gumstix Overo	4000	-	2853.39	15.0	0.20
Beagleboard-xm	4000	-	3109.50	13.7	0.36
Beaglebone Black	4000	-	1679.52	25.4	1.48
Pandaboard	4000		344.24	12.4	2.69
Trimslice	4000		n/a	n/a	n/a
Cubieboard2	4000	-	418.37	10.2	5.18
Chromebook	10,000	-	2630.54	253.0	14.18
ODROID-xU	10,000	-	1933.52	345.0	14.73

Figure 1: Comparison ARM architecture

- High-performance Linpack (HPL)
- ATLAS as BLAS
- MPI for message-passing

<ロト < 四ト < 三ト < 三ト

 Scaled problems for stronger processors

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Performance evaluation ARM and x86_64

Machine	N	-	Total Energy	MFLOPS per Watt	MFLOPS per \$
Raspberry Pi Model B	4000	-	801.80	53.2	5.06
Raspberry Pi Model B+	4000	-	494.05	86.4	5.06
Gumstix Overo	4000	-	2853.39	15.0	0.20
Beagleboard-xm	4000	-	3109.50	13.7	0.36
Beaglebone Black	4000	-	1679.52	25.4	1.48
Pandaboard	4000		344.24	12.4	2.69
Trimslice	4000		n/a	n/a	n/a
Cubieboard2	4000		418.37	10.2	5.18
Chromebook	10,000	-	2630.54	253.0	14.18
ODROID-xU	10,000	-	1933.52	345.0	14.73
2 core Intel Atom S1260	15,000	-	20,468	112.3	4.25
16 core AMD Opteron 6376	40,000	-	171,904	247.2	21.60
12 core Intel Sandybridge-EP	40,000	-	123,321	346.0	21.30

Figure 2: Comparison ARM vs x86_64 processors

- Scaled problems for stronger processors
- Relative data provides objective results
- Stronger ARM processors can compete with x86
- Power per watt comparable

イロト イ理ト イヨト イヨト

 ODROID expensive because specific

Dense Linear Algebra ○○○○○ ●○ ○	MapReduce 0000 000	Spectral Methods	
Paper 2			

Evaluating Energy Efficient HPC Clusters for Scientific Workloads

Jahanzeb Maqbool, Sangyoon Oh and Geoffrey C. Fox

	ARM SoC	Intel Server
Processor	Samsung Exynos 4412	Intel Xeon x3430
Processor Family	ARM Cortex A9	Intel Nehalem
L1/L2/L3	32K(i) 32K(d) / 1M / None	32K / 256K / 4M
# of cores	4	4
Clock Speed	1.4 GHz	2.40 GHz
Instruction Set	32-bit	64-bit

Table 7: Specification of the compared ARM and Intel processors

Dense Linear Algebra ○○○○○ ○● ○	MapReduce 0000 000	Spectral Methods 0000	
Performance ev Paper 2	aluation		

- *R_{max}* : maximum amount of GFLOPS
- $\bar{P}(R_{max})$: average powerconsumption

Testbed	Build	R _{max} (GFLOPS)	$\bar{P}(R_{max})$	PPW(MFLOPS/watt)
Weiser	ARM Cortex-A9	24.86	79.13	321.70
Intel x86	Xeon x3430	26.91	138.72	198.64

Table 8: Energy Efficiency of Intel x86 server and Weiser cluster running HPL benchmark

イロト イポト イヨト イヨ

Dense Linear Algebra ○○○○○○ ○○ ●	MapReduce 0000 000	Spectral Methods	
Conclusion Der	nse Linar Alge	ebra	

- ARM can compare to x86 in Power/Watt
- Nonstandard hardware results in high acquisation costs
- Small cache size limits ARM when computing larger problems
- ARM is currently in the ascendent

.∋...>

Dense Linear Algebra 000000 000 00 0	MapReduce	Spectral Methods 0000	

MapReduce

Figure 3: Mapreduce model

- Programming model for processing large datasets on clusters
- Composition of map and reduce procedures
- Used to compute word count, string match, histogram and more

イロト イポト イヨト イヨト

Dense Linear Algebra 000000 000 00 0	MapReduce ●ooo ○○○	Spectral Methods	
Danor 1			

Comparing the Performance and Power Usage of GPU and ARM Clusters for Map-Reduce

Vivian Delplace and Pierre Manneback

Hardware	Cores	CPU clock	Maximum Power
Nvidia M2090	512	1.3Ghz	225W
Viridis ARM cluster(Cortex A9)	192	1.4GHz	300W

Table 9: Specification of the compared ARM and GPU hardware

	WC	SM
Mars	172	172
Disco	32	31

Table 10: Lines of code on GPU (Mars) and ARM (Disco)

Dense Linear Algebra 000000 000 00 0	MapReduce ○●○○ ○○○	Spectral Methods	
Evaluation Pan			

Evaluation Paper 1 Word Count (map+reduce)

Figure 4: Total time

Figure 5: Power average

Figure 6: Performance/Watt

Dense Linear Algebra 000000 000 00 0	MapReduce oo●o ooo	Spectral Methods	
Evaluation Pape			

Figure 7: Total time

Figure 8: Power average

Figure 9: Performance/Watt

イロト イロト イヨト イヨト

Dense Linear Algebra	MapReduce	Spectral Methods	Conclusion and future prospect
000000 000 00 0	000 ● 000		

Application	input size	perf/W ARM cluster	perf/W GPU	ratio GPU/ARM cluster
WC	512 MB	0.088008	0.070254	0.80
SM	2048 MB	0.238806	1.158083	4.80

Table 11: Performance per watt per application for the largest input

Mars (GPU)	Disco (ARM)
C++/CUDA	Erlang and Python
global memory directly accessible	local disks
small inputs	large inputs
almost at full potential	already good still improvable

Table 12: Direct comparison

Dense Linear Algebra 000000 000 00 0	MapReduce ○○○○ ●○○	Spectral Methods	
Paper2			

Performance Evaluation of Embedded Processor in MapReduce Cloud Computing Applications

Christoforos Kachris, Georgios Sirakoulis and Dimitrios Soudris

	HP-GPP	LP-GPP	EP
Processor	i7-2600	U5400	OMAP4430
# of Cores	4	2	2
Cores	Intel i7	Intel Pentium	ARM Cortex A9
Frequency	3.4 GHz	1.2 GHz	1 GHz
L1 Cache	64 KB (I), 64 KB (D)	64 KB (I), 64 KB (D)	32 KB (I), 32 KB (D)
L2 Cache	256 KB per core	256 KB per core	1 MB (shared)
L3 Cache	8 MB	3 MB	-
Instruction Set	64-bits	64-bits	32-bits

Table 13: Processor architecture characteristics

-

• • • • • • • • • • • •

Dense Linear Algebra	MapReduce	Spectral Methods	Conclusion and future prospect
000000 000 00 0	0000 000		

Evaluation Paper 2

イロト イ理ト イヨト イヨト

Dense Linear Algebra 000000 000 00 0	MapReduce ○○○○ ○○●	Spectral Methods	
Conclusion			

- ARM consumes 7.8x less energy
- GPP requires more energy due to:
 - ► CISC
 - advanced branch prediction scheme
 - larger caches
- Tradeoff between executiontime and energy consumption

- ₹ 🖹 🕨

Dense Linear Algebra 000000 000 00 0	MapReduce 0000 000	Spectral Methods ●○○○	
Paper			

Time-to-Solution and Energy-to-Solution: A Comparison Between ARM and Xeon

Edson Padoin, Daniel de Oliveira, Pedro Velho, Philippe Navaux

Processor	Nehalem	Nehalem	ARM Cortex A9
Processor Model	Xeon E5530	Xeon X7550	OMAP4430
# of Processors	2	4	1
Cores/Processors	4	8	2
Threads/Core	2	2	2
Frequency	2.40 GHz	2.00 GHz	1.00 GHz
TDP (W)	80	130	0.25

Table 14: Specification of the compared hardware

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Evaluation NAS Parallel Benchmark (Fast Fourier Transform)

Figure 12: Time-to-Solution as a function of the # threads

Benchmark	XeonE5	XeonX7	ARMa9	ARMa9 XeonE5	ARMa9 XeonX7
FT	14.6	12.8	11899.6	815.0	929.7

Table 15: Average time-to-solution (in seconds) and ratio of ARMa9 to XeonE5/XeonX7

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Evaluation NAS Parallel Benchmark (Fast Fourier Transform)

Figure 13: Energy-to-Solution as a function of the # threads

Benchmark	XeonE5	XeonX7	ARMa9	<u>XeonE5</u> ARMa9	XeonX7 ARMa9
FT	0.875	2.070	17.800	20.35	8.60

Table 16: Average energy-to-solution (in WH) and ratio with Xeon as reference

Dense Linear Algebra 000000 000 00 0	MapReduce 0000 000	Spectral Methods 000●	
Conclusion as given in the pape			

- Xeon has better hardwaresupport for floating point operations
- Xeon outperformes ARM in every NAS Parallel Benchmark (Fast Fourier Transform)
- ARM for HPC still questionable
 - Consumes less energy
 - Requires much more execution time

- ₹ 🖿 🕨

Dense Linear Algebra 000000 000 00 0	MapReduce 0000 000	Spectral Methods	Structured Grids	
Paper				

Energy efficiency vs. performance of the numerical solution of PDEs: An application study on a low-power ARM-based cluster Dominik Göddeke, Dimitri Komatitsch, Markus Geveler, Dirk Ribbrock, Nikola Rajovic, Nikola Puzovic, Alex Ramirez

Dense Linear Algebra		Spectral Methods	Structured Grids	
200000	0000			
200				

	ARM	x86
Processor	Cortex A9	Intel Xeon X5550
Clockspeed	2x 1.0GHz	2x 4x2.66GHz
L1 Cache	i/d 32KB	i/d 64KB
L2 Cache	2MB	2MB
L3 Cache		8MB
Memory	896 MB DDR2 (low power)	16 GB DDR3
	does not support NEON	no hyperthreading
	the integrated GPUs are not used	

Table 17: Specifications of the processors

(日)(1日)(日)(日)(日)(日)(日)

inear Algebra		Spectral Methods	Structured Grids	Conclusion and future prospe
	0000			

x86 cluster configurations

Tibidabo		Configura	tion 1	Configura	tion 2	Configura	tion 3	Configura	tion 4
Cores	Nodes	Nodes	Cores/node	Nodes	Cores/node	Nodes	Cores/node	Nodes	Cores/node
6	3	1	6	1	8	1	8	1	8
12	6	2	6	2	8	1	8	1	8
24	12	4	6	4	8	1	8	2	8
48	24	8	6	8	8	2	8	4	8
96	48	16	6	16	8	3	8	6	8
192	96	32	6	32	8	6	8	12	8
4	2	1	4			1	8	1	8
8	4	1	8			1	8	1	8
12	6	2	6			1	8	1	8
24	12	4	6			1	8	2	6
48	24	8	6			2	8	3	8
96	48	16	6			3	8	6	8
192	96	32	6			6	8	12	8

Figure 14: Details of the mapping onto various x86-Cluster Nodes for FEAST(top) and SPECFEM3D_GLOBE(bottom)

- Config 1: same load per core as on the ARM cluster
- Config 2: use all 8 cores per node (not possible with SPECFEM3D_GLOBE)
- Config 3: use as few nodes as possible
- Config 4: use twice the amount of nodes as in config 3

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Application: FEAST(Finite-Element Analysis and Solution Tools) SBBLAS and MPI

Figure 16: Energy to solution

- FEAST is a Finite Element based solver toolkit for the simulation of PDE problems
- FEAST is rather memory-bound
- ARM Cluster is more energy efficient for all problem sizes and configs

MapRedu

Spectral Methods

Structured Grids

Conclusion and future prospect

Application: SPECFEM3D_GLOBE MPI

Figure 18: Energy to solution

- SPECFEM3D_GLOBE simulates global and regional seismic wave propagation
- SPECFEM3D_GLOBE is rather compute-bound
- Big difference between peak floating point performance
 - \rightarrow no gain in energy efficiency

A B A A B A

Dense Linear Algebra		Spectral Methods	Structured Grids	Conclusion and future prospect
000000 000 00 0	0000 000			

Conclusion Structured Grids

- Paper was not about Structured Grids in particular but about PDEs
- Again: tradeoff between energy and speed
- Moderate slowdowns but substantial reductions of energy to solutions are possible
- "How much slower can the simulation afford be for certain energy savings"

→ ∃ →

Dense Linear Algebra 000000 000 00 0	MapReduce 0000 000	Spectral Methods	Conclusion and future prospect
Conclusion			

- Green computing
- Exascale computing achievable
- Exascale computing
 - 20 Megawatt Exascale system by 2018-2019
 - 50 GFLOPS per watt
- ▶ 64-Bit
- Cache size

イロト イポト イヨト イヨ

Dense Linear Algebra		Spectral Methods	Conclusion and future prospect
000000	0000		

References

- Design and analysis of a 32-bit embedded high-performance cluster optimized for energy and performance Michael F. Cloutier, Chad Paradis and Vincent M. Weaver
- Evaluating Energy Efficient HPC Clusters for Scientific Workloads Jahanzeb Magbool, Sangyoon Oh and Geoffrey C. Fox
- Comparing the Performance and Power Usage of GPU and ARM Clusters for Map-Reduce Vivian Delplace and Pierre Manneback
- Performance Evaluation of Embedded Processor in MapReduce Cloud Computing Applications Christoforos Kachris, Georgios Sirakoulis and Dimitrios Soudris
- Time-to-solution and energy-to-solution: a comparison between ARM and Xeon Edson Padoin, Daniel de Oliveira, Pedro Velho, Philippe Navaux
- Energy efficiency vs. performance of the numerical solution of PDEs: an application study on a low-power ARM-based cluster

Dominik Göddeke, Dimitri Komatitsch, Markus Geveler, Dirk Ribbrock, Nikola Rajovic, Nikola Puzovic, Alex Ramirez

イロト イポト イヨト イヨト

Dense Linear Algebra 000000 000 00 0	MapReduce 0000 000	Spectral Methods 0000	Conclusion and future prospect
Workbalance			

- no individual work
- from papersearch to presentation teamwork